Cambridge Isotope Laboratories, Inc. isotope.com \\ \section*{\title{
Metabolomics \\ \section*{\title{
Metabolomics QReSS ${ }^{\text {TM }}$ Kits QReSS ${ }^{\text {TM }}$ Kits For Untargeted and Targeted
Mass Spectrometric Analysis For Untargeted and Targeted
Mass Spectrometric Analysis For Untargeted and Targeted
Mass Spectrometric Analysis
}} For Untargeted and Targeted
Mass Spectrometric Analysis
}}

To ensure high-quality metabolomics results, the method and instrument system must be qualified as being fit for purpose. This involves testing for losses or errors in the analytical workflow. To aid such performance assessments in MS metabolomics and enable metabolite quantification, Cambridge Isotope Laboratories, Inc. (CIL) is pleased to offer the QReSS ${ }^{\text {™ }}$ (Quantification, Retention, and System Suitability) kit. Its potential use could also extend to other applications, such as metabolite retention indexing.

The kit contains the following materials and tools:

- Vials of stable isotope-labeled metabolite mixes (lyophilized)
- User manual (with example procedures, methods, and results)

	Catalog No.	Description
	MSK-QReSS-KIT	Metabolomics QReSS Kit
	MSK-QReSS1	Metabolomics QReSS Standard Mix 1
	MSK-QReSS2	Metabolomics QReSS Standard Mix 2
COMING SOON!	MSK-QReSS-EXP-KIT	Expanded Metabolomics QReSS Kit (contains MSK-QReSS1, MSK-QReSS2, and MSK-QC2)

Note: Unlabeled mixes/kits may be available. Please inquire.
Table. Mix compositions. Reconstituting each vial in 1 mL of solvent (e.g., 50% methanol) will yield the specified concentrations.

Description	Chemical Formula	MW (Da)	Conc. ($\mu \mathrm{g} / \mathrm{mL}$)	Vial
L-Alanine (${ }^{13} \mathrm{C}_{3}, 99 \%$; ${ }^{15} \mathrm{~N}, 99 \%$)	${ }^{13} \mathrm{C}_{3} \mathrm{H}_{7}{ }^{15} \mathrm{NO}_{2}$	93.07	100	1
1,4-Butanediamine (putrescine) $22 \mathrm{HCl}\left({ }^{13} \mathrm{C}_{4}, 99 \%\right)$	${ }^{13} \mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	165.04	10	1
Creatinine (N -methyl- $\mathrm{D}_{3}, 98 \%$)	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{D}_{3} \mathrm{~N}_{3} \mathrm{O}$	116.14	100	1
Ethanolamine $\cdot \mathrm{HCl}\left(1,1,2,2-\mathrm{D}_{4}, 98 \%\right)$	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D}_{4} \mathrm{NO} \cdot \mathrm{HCl}$	101.57	10	1
Guanosine $2 \mathrm{H}_{2} \mathrm{O}\left({ }^{15} \mathrm{~N}_{5}, 96-98 \%\right)$	$\mathrm{C}_{10} \mathrm{H}_{13}{ }^{15} \mathrm{~N}_{5} \mathrm{O}_{5}$	288.21*	2	1
Hypoxanthine (${ }^{\left(3 C_{5}\right.}$, 99\%)	${ }^{13} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}$	141.08	10	1
L-Leucine (${ }^{13} \mathrm{C}_{6}, 99 \%$)	${ }^{13} \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{2}$	137.13	5	1
L-Phenylalanine (ring- ${ }^{13} \mathrm{C}_{6}, 99 \%$)	${ }^{13} \mathrm{C}_{6} \mathrm{C}_{3} \mathrm{H}_{11} \mathrm{NO}_{2}$	171.15	100	1
Thymine ($1,3-{ }^{-1} \mathrm{~N}_{2}, 98 \%$)	$\mathrm{C}_{5} \mathrm{H}_{6}{ }^{15} \mathrm{~N}_{2} \mathrm{O}_{2}$	128.10	20	1
L-Tryptophan (${ }^{13} \mathrm{C}_{11}, 99 \%$)	${ }^{13} \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$	215.14	100	1
L-Tyrosine (ring- ${ }^{13} \mathrm{C}_{6}, 99 \%$)	${ }^{13} \mathrm{C}_{6} \mathrm{C}_{3} \mathrm{H}_{11} \mathrm{NO}_{3}$	187.14	100	1
Vitamin B_{3} (nicotinamide) (${ }^{13} \mathrm{C}_{6}, 99 \%$)	${ }^{13} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$	128.08	5	1
Citric acid (1,5,6-carboxyl- ${ }^{13} \mathrm{C}_{3}, 99 \%$)	${ }^{13} \mathrm{C}_{3} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{7}$	195.10	10	2
Fumaric acid (${ }^{13} \mathrm{C}_{4}, 99 \%$)	${ }^{13} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$	120.04	100	2
Indole-3-acetic acid (phenyl- ${ }^{13} \mathrm{C}_{6}, 99 \%$)	${ }^{13} \mathrm{C}_{6} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{2}$	181.14	5	2
α-Ketoglutaric acid, disodium salt (1,2,3,4-13 ${ }^{13}$, 99\%) CP 97\%	${ }^{13} \mathrm{C}_{4} \mathrm{CH}_{4} \mathrm{Na}_{2} \mathrm{O}_{5}$	194.03	100	2
Sodium palmitate ($\mathrm{U}-{ }^{13} \mathrm{C}_{16}, 98 \%$)	${ }^{13} \mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Na}$	294.29	10	2
Sodium pyruvate (${ }^{(13} \mathrm{C}_{3}, 99 \%$)	${ }^{13} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{Na}$	113.02	100	2

*Anhydrous
Chemical purity (CP) is 98% or greater, unless otherwise indicated.
For research use only. Not for use in diagnostic procedures.

This kit, through collaboration with Sciex, was validated in different matrices (e.g., plasma, urine, CHO cells) using a single injection, high-flow UHPLC-MRM/MS method (QTRAP ${ }^{\circledR}$ 6500+). Note that the mixes can also be extended to alternate LC-MS platforms. Procedurally, after reconstituting and mixing the kit vials, a working aliquot can be applied in various ways for use in metabolomic LC-MS/MS exercises. This enables the analytical performance to be evaluated and quantitative determinations of metabolites to be made (see app note \#49 for example overview).

Application Notes
Percy, A.J.; Souza, A.; Ntai, I.; et al. 2022. From QC to quantitation: Utility of QReSS ${ }^{\text {TM }}$ metabolites in FBS measurements. (CIL application note \#51)
Percy, A.J.; Proos, R.; Demianova, Z.; et al. 2021. Standardizing quantitative metabolomics analyses through the QReSS ${ }^{\text {TM }}$ kit. (CIL application note \#49)

